domingo, 20 de janeiro de 2019




x

x



x
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D







 (Y)

x

x



x
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D







 e 
x


x



x
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D





x

x



x
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D








x

x



x
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D










efeito Zeeman é o desdobramento das raias espectrais de um espectro em resposta à aplicação de um campo magnético B à amostra.



efeito Zeeman normal é aquele pelo qual acontece o desdobramento de uma linha espectral de duas maneiras diferentes:
  • Se a observação se fizer ao longo de uma direção paralela ao vetor de indução magnética B, então a linha espectral original do espectro (na ausência de campo magnético) desdobrar-se-á em duas linhas.
  • Se a observação for feita em uma direção perpendicular ao vetor B, a linha original desdobrar-se-á em três linhas.
efeito Zeeman anormal ou efeito Zeeman anômalo em espectros na região vísivel do espectro eletromagnético é o desdobramento de uma risca espectroscópica original em 2j + 1 raias diferentes, onde j é a projecção do vetor momento angularqüântico sobre o eixo de quantização. Ocorre em campos fracos. A separação entre as raias espectrais varia.
Se o campo for muito intenso, sobrepujará o campo eletromagnético próprio do átomo e ocasionará o desdobramento das linhas em multipletos com separação constante. A esse efeito dá-se o nome de efeito Paschen-Back.

Introdução[editar | editar código-fonte]

Na maioria dos átomos, existem muitas configurações que têm a mesma energia, então estas transições entre diferentes pares de configurações correspondem a uma linha única. A presença de um campo magnético desfaz essa degeneração, uma vez que interage de diferentes maneiras com os elétros de diferentes números quânticos, modificando ligeiramente suas energias. O resultado é que, onde houvera muitas configurações com a mesma energia, agora há energias diferentes, o que faz aparecer muitas linhas espectrais. Sem um campo magnético, as configurações A, B e C tem a mesma energia de D, E e F. A presença de um campo magnético divide os níveis de energia. Uma linha produzida pela transição de A, B ou C para D, E ou F agora será muitas linhas entre diferentes combinações de A, B, C e D, E e F. Não são todas as transições possíveis. Uma vez que a distância entre os sub-níveis de Zeeman é proporcional ao campo magnético, este efeito foi usado por astrônomos para medir o campo magnético do Sol e outras estrelas. Também há um efeito Zeeman anômalo que aparece nas transições onde a teia de spins dos elétros não é 0. Se chama anômalo porquê o spin não tinha sido descoberto e então não havia uma boa explicação para o fenômeno. Na verdade naquele momento procurava-se a comprovação de um momento angular do átomo e o que estava sendo representado pelo experimento era o spin eletrônico. Se a intensidade do campo magnético é muito grande, o efeito não é mais linear, este efeito é chamado efeito Paschen-Back.

A Frequência de Larmor e o Efeito Zeeman Normal (Tratamento Clássico)[editar | editar código-fonte]

A precessão do vector momento angular num campo magnético.
Consideremos o efeito de um campo magnético fraco em um electrão em movimento circular numa órbita planar.
Assumindo que o campo magnético é aplicado ao longo do eixo z e o momento angular é orientado num ângulo θ com respeito ao eixo z, conforme mostrado na figura ao lado.[1]
torque agindo sobre  é dado por
este é direcionado para o plano da página, na direção de ф.
Agora, o torque também é igual a taxa de variação do momento angular, então nós temos
 (X)
Mas
Então a forma escalar da Equação (X) torna-se
 (Z)
Definindo a velocidade precessional pela relação:
De modo que Eq (Z) torna-se
A velocidade angular  é chamada a freqüência de Larmor.
Assim, o vector momento angular realiza movimento de precessão em torno do eixo z na freqüência Larmor como resultado do torque produzido pela ação de um campo magnético sobre o seu momento magnético associado.
Usando a relação de Planck, a energia associada com a freqüência de Larmor é
 (Y)
onde os sinais se referem ao sentido de orientação. Será observado que esta diferença de energia é a energia potencial de um dipolo magnético cujo momento é um magnetão de Bohr.
A energia dipolar é dada pela relação
Na (Y), o sinal positivo corresponde ao alinhamento antiparalelo enquanto o sinal negativo (menor energia) indica alinhamento paralelo.[1]
O efeito geral desta energia associada com a freqüência de Larmor é que, se a energia de um electrão tendo um momento  é na ausência de um campo aplicado, então num campo magnético  ele pode assumir uma das energias
Transições com e sem campo magnético
Assim, numa coleção de partículas atómicas idênticas do tipo discutido, um campo magnético produz um tripleto de níveis, chamado um tripleto de Lorentz cujas energias são
 e 
Este fenómeno é conhecido como o efeito Zeeman Normal.
O efeito Zeeman é, na verdade, mais complexo do que foi apresentado no tratamento clássico. O spin do electrão é excluído no modelo clássico.
Assim, quando um campo magnético é aplicado os momentos angulares orbital e de spin realizarão movimento de precessão.
As separações do nível energético resultantes não podem ser explicadas classicamente e assim requerem um tratamento de mecânico quântico. Como consequência deste comportamento inexplicável, o efeito Zeeman mais geral, incluindo spin foi historicamente designado erradamente como o efeito Zeeman anómalo.

Efeito Zeeman (hamiltoniano)[editar | editar código-fonte]

hamiltoniano total de um átomo em um campo magnético é:
onde  é o Hamiltoniano não perturbado do átomo, e os somatórios sobre α são somatórios sobre os elétrons do átomo. O termo
é a junção LS para cada elétron (indexado por α). O somatório desaparece se há apenas um elétron. A ligação do campo magnético
é a energia devida ao momento magnético μ do α-ésimo elétron. Ele pode ser escrito como somatório das contribuições do momento orbital angular e do momento angular de spin, com cada um multiplicado pelo fator g de Landé. Projetando o vetor quantidades no eixo z, o Hamiltoniano pode ser escrito como
onde a aproximação resulta do fator g como  and . O somatório sobre os elétrons foi omitido. Aqui,  é o momento angular total, e a junção LS foi agrupada em . O tamanho do termo interação H ' não é sempre pequeno, e pode induzir grandes efeitos no sistema. No efeito Paschen-Back, H ' não pode ser tratado como uma perturbação, já que sua magnitude é comparável (ou até maior) que o sistema . O termo H ' não comuta com . Em particular,  não comuta com a interação spin-órbita em .

O Fator g de Landé e o efeito Zeeman[editar | editar código-fonte]

O Momento Magnético Total não é Colinear com momento angular .
As contribuições orbital e de spin para o momento magnético são dadas por
Onde 
Agora, quando  combinam, temos
É evidente a partir das expressões para  que o momento magnético total não é, em geral, colinear com o momento angular total, conforme ilustrado na Figura
Dado que  precessiona em torno de  é aparente que  também precessiona em torno de 
No entanto, o momento magnético eficaz, isto é a componente de  ao longo de  mantém o valor constante,
Definimos o fator g de Landé como
 (Z)
E o momento magnético efetivo torna-se
Para spin zero, a equação (Z) reduz-se ao caso clássico de g = 1 e para l = 0, g = 2. Agora estamos em uma posição para incluir o denominado efeito Zeeman Anómalo.
O momento magnético correspondente ao longo da direção do campo, considerado como a direcção do eixo z, será então
tendo uma energia dipolar magnética :
No caso de clássico, g = 1, mas na Equação acima, g depende dos números quânticos l, s e j.
Num campo magnético B, tal que  é menor do que a energia de spin-órbita, j e  são bons números quânticos e as energias dos estados se desdobram como mostrado na tabela a seguir.
Assim, o denominado efeito Zeeman "anómalo" é o que normalmente seria de esperar de um electrão tendo spin semi-inteiro em um campo magnético fraco.
O efeito Zeeman "normal" ou clássico não pode ocorrer para um único electrão em um campo magnético fraco devido o termo de spin na Eq (Z).
No entanto, nos átomos em que os spin são combinados para que o spin total seja zero, o valor de g para todos os estados espectroscópicos é o valor clássico e apenas três linhas espectrais são observadas.

Histórico[editar | editar código-fonte]

Efeito Zeeman normal: das 15 transições possíveis entre os estados l = 2 e l = 1, separadas pelo campo magnético, ocorrem apenas 9, correspondendo a ∆m = mi - mf -1, 0, 1, sob a forma de três linhas.
Em 1902, O Prêmio Nobel de Física foi concedido aos físicos holandês Pieter Zeeman (1865-1943) e Hendrik Antoon Lorentz (1853-1928) por suas investigações sobre o efeito do magnetismo sobre a radiação eletromagnética.
Em 1895, Lorentz publicou um trabalho intitulado Versuch einer Theorie der eletrischen und optichen Erscheinungen in bewegten kórpern , no qual apresentou a famosa teoria das partículas carregadas , denominadas por ele de íons, com o qual afirmou que são as oscilações dessas “partículas” constituintes dos corpos ponderáveis as responsáveis pela emissão do espectro luminoso de alguns deles.
Portanto, sendo isso verdade, Lorentz afirmou ainda que, se tais corpos fossem colocados em uma região contendo um campo magnético, aquelas oscilações deveriam sofrer alterações, provocando modificação no espectro luminoso, de tal modo que cada linha espectral emitida na ausência do campo magnético seria decomposta em três linhas por interferência desse referido campo. E mais ainda, continuou Lorentz com o seu raciocínio, quando a observação é feita na direção do campo magnético, aparecerão apenas duas linhas polarizadas circularmente e em sentido inverso uma da outra; quando a observação é feita perpendicularmente ao campo, aparecerão três linhas, sendo a central polarizada linearmente à direção do campo (componente π), e as duas extremas, polarizadas também linearmente, porém perpendicularmente à direção do campo (componente σ); essa denominação deriva da palavra alemã senkrecht que significa perpendicular.[2]
Em 1896, Zeeman publicou um trabalho na Verhandlungen der physikalischen Gesellschaft zu berlin 7 (p. 128), no qual confirmou experimentalmente as previsões que seu professor Lorentz fizera em 1895, da ação do campo magnético sobre as linhas espectrais. Em sua experiência, Zeeman usou uma bobina de Rühmkorff de corrente de 27 Ampères e uma grade de difração de Rowland de 44.983 linha/polegadas. Com esse equipamento, observou que a linha D do sódio (Na) separava-se em três, quando uma amostra desse elemento químico era colocado na região de forte campo magnético. Este fenômeno ficou mundialmente conhecido como efeito Zeeman normal.




x

x



x
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D







 (Y)

x

x



x
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D







 e 
x


x



x
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D





x

x



x
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D








x

x



x
x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D







A importância dessa equação consiste em que ela representa a base sobre a qual todos os modernos aparelhos matemáticos de fenomenologia termodinâmica, tanto os conceitos de equilíbrio e não-equilíbrio, são baseados. A equação de Gibbs pode ser representada para uso de outros potenciais termodinâmicos equivalentes nas seguintes formulações:








as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].